By Timothy Chen | Published: June 19, 2024 – 4:01 pm
Maximize your AC power system’s efficiency with the CTSR family of mini split-core current transformers. Designed for seamless integration into space-constrained environments, these transformers offer a swift and straightforward installation process. Experience unparalleled accuracy in AC current measurement, thanks to the high-performance magnetic core housed within a compact form factor. Durability meets convenience with the robust design, featuring a mechanical hinge that ensures repeated, reliable open/close operations. The precise alignment and firm closure of the core halves post-installation guarantee the transformer’s long-term consistency and measurement precision. Choose CTSR transformers for a dependable solution that promises consistent and precise AC current monitoring, vital for the optimal performance of your electric power distribution system. UL 2808 Listed.
By Timothy Chen | Published: January 4, 2024 – 4:37 pm
In an AC powered system, the ratio between the AC power that actually performs work (Watt = Voltage times Current) and the power that is applied (applied voltage times applied current) is measured by the Power Factor. A power factor of 1.0 means that all of the applied AC voltage and AC current performs work. The electric energy in an AC system that performs work is measured in kWatt. The applied power or apparent power is measured in kVA (applied voltage multiplied by applied current).
Conceptually, Apparent power (kVA) is equal to Power that Performs Work (kW) plus Power that is wasted or reactive power (VAR). The illustration that is offered in many texts is of a glass of beer. You pay for the whole glass of beer, but the glass is composed of the beer which is the useful part and the foam on top which is not very satisfying. The simple reason for the difference is that in an AC system any inductance results in the AC current wave form to lag the AC voltage wave form by 90 degrees. The current and voltage are no longer in sync, thus the work performed (watts = current times voltage) is reduced. Inductance in an AC power distribution network is common. An inductor is essentially a coil of wire and in most typical electric power distribution systems represented by motors. If paying for the foam is not important, then read no further. If electric power efficiency and sustainability are important, a sub-metering system that can perform the Power Factor calculation by distribution line in real time is critical to identifying the source of the foam. Once identified steps can be taken to ameliorate the Reactive Power, returning Power Factor closer to 1.0.
By Timothy Chen | Published: May 7, 2020 – 8:59 am
The 16mm opening and 24mm opening mini spit-core, open-loop, Hall Effect sensors are ideal for retrofitting DC sensors in tight physical environments. The HOS016 and HOS024 families of mini split-core, open loop Hall Effect current sensors offer fast and easy installation into existing electric power distribution systems where space is a premium. The split-core design features a sensitive Hall Effect sensor in a small physical package, providing highly accurate DC current measurement. These sensors are designed for installation in harsh operating environments.
Hall Effect Sensor
The robust packaging features a mechanical hinge for multiple open/ close actions, tight fitting of the mating halves and secure closure of the Hall Effect sensor after installation. This feature insures consistent and highly accurate performance over the life of the Hall Effect current sensor. The HOS016 and HOS024 split-core Hall Effect sensor design, manufactured in an ISO9001 certified manufacturing facility, insures many years of defect free operation backed by a strong product warranty of 36 months. HOS016 Information:16mm Hall Effect Current Sensor, Split-core, Open-loopHOS024 Information:24mm Hall Effect Current Sensor, Split-core, Open-loop Many of our products can be designed and manufactured to meet the specific application requirements. For a no obligation technical evaluation, contact us with your specific performance requirements .
By Timothy Chen | Published: January 30, 2020 – 5:15 pm
A direct current leakage current sensor is used to measure the milli-ampere level DC current in a primary conductor with both AC (alternating current)
and DC (direct current) components. The sensor uses the “magnetic modulation” technique to offset the AC component in the primary conductor by introducing an offsetting magnetic field. The offsetting magnetic field is generated by an interior square wave oscillator which balances the primary conductor AC current magnetic field.
By Timothy Chen | Published: May 21, 2019 – 4:15 pm
The AC current transformers used for the accurate measurement of AC electric currents are designed to transform the AC primary current to a proportional AC voltage signal or a lower proportional AC current signal level that is appropriate for micro-processor based systems. The VA (Voltage – Amperage) burden that is imposed on the AC current transformer secondary output can have a significant impact on the accuracy performance of the AC current transformer. To achieve the Accuracy Class desired for specific application, the AC current transformer primary to secondary ratio must be carefully matched with the VA burden of the monitoring device to provide the optimum accuracy performance.
AC Current Transformer Secondary Burden
The secondary burden or impedance on the AC current transformer has a direct impact on the accuracy performance of the AC current transformer. Overloading the AC current transformer secondary coil can have a significant adverse impact on the AC current transformer accuracy performance. Careful consideration should be given to the interface between the monitoring device and the current transformer to assure optimum accuracy performance. AC Voltage Secondary For a typical AC current transformer with a AC voltage secondary signal, maintaining a secondary burden of ≥ 10,000 ohms is typically adequate to assure optimum accuracy performance. Minimal power is drawn from the AC current transformer secondary coil. AC Current Secondary For a current transformer with an AC current secondary signal, the secondary burden is critical to the accuracy performance of the current transformer. For the purposes of this BLOG post, the CTSB0816 Split-core current transformer with a 5A secondary output signal at Rated Primary Current will be discussed. This example will compare two of the same model CTSB0816 split-core current transformer, each configured for different Rated Primary Currents:
Model CTSB0816-500A/ 5A with a Rated Primary Current of 500A and secondary signal at Rated Primary Current (500A) of 5A and
Model CTSB0816-5000A/ 5A with a Rated Primary Current of 5,000A and secondary signal at Rated Primary Current (5,000A) of 5A.
Accuracy Class
Model
0.5
1.0
3.0
CTSB0816-500A/ 5A
2.5VA
5.0VA
10.0VA
CTSB0816-5000A/ 5A
20.0VA
30.0VA
40.0VA
The comparison of the two models shows the significant difference in burden allowed to meet a specific Accuracy Class performance. In this example, to obtain an Accuracy Class 0.5 for the CTSB0816-500A/ 5A the secondary burden must be less than 2.5VA, whereas the CTSB0816-5000A/ 5A the secondary burden must be less than 20.0VA. Consideration in the calculation of the Current Transformer Burden (VA) should not only consider the measuring device burden, but especially for the lower VA burdens, the length of lead wire from the current transformer to the measuring device. For the CTSB0816-500A/ 5A configuration the current transformer coil impedance (inductance and resistance) and the length of the wire from the current transformer to the measuring device could significantly impact accuracy performance. Download CTBS0816 product information: CTSB Brochure (pdf 349kb)
By Timothy Chen | Published: April 16, 2019 – 5:18 pm
The accuracy performance of an AC current transformer’s primary current to secondary signal transformation (where the secondary is either a current or voltage) is stated as Accuracy Class. The Accuracy Class for current transformers is measured in accordance with the IEC61869 standard. The IEC61869-2 standard specifies transformation accuracy for current transformers at different percentage levels of Rated Primary Currents. Rated Primary Current is the AC primary current which will result in a secondary signal output equal to the current transformer’s design full scale (for example a model CTSB0816-500A/ 5A Rated Primary Current is 500A with a secondary output at Rated Primary Current of 5A).
IEC61869 Current Transformer Accuracy Class 0.2:
±0.75% ratio error @ 5% of rated primary current,
±0.35% ratio error @ 20% of rated primary current,
±0.20% ratio error @ 100% of rated primary current
±0.20% ratio error @ 120% of rated primary current
IEC61869 Current Transformer Accuracy Class 0.5:
±1.50% ratio error @ 5% of rated primary current,
±0.75% ratio error @ 20% of rated primary current,
±0.50% ratio error @ 100% of rated primary current
±0.50% ratio error @ 120% of rated primary current
The current transformers offered by T.I. Chen Associates are designed for the accurate measurement of AC currents up to 120% of the Rated Primary Current. The Accuracy Class requirements as applied to a specific model of a current transformer may limit the Rated Primary Current ranges that can meet those accuracy requirements. Example: CTSB0816 Split-core Current Transformer Accuracy Class 0.5: The CTSB0816 is a split-core current transformer with an opening of 80mm(3.15″) x 160mm(6.30″. Typical applications would be large primary conductors and BUS bars. Download the CTSB Brochure (pdf 349kb) Accurate measuring range is 5%-120% of Rated Primary Current, for rated primary currents from 500A-2,000A (e.g. models CTSB0816-500A/ 5A to CTSB0816-2000A/ 5A).
CTBS0816-500A/ 5A: Class 0.5 measurement range would be 25A to 600A.
CTSB0816-2000A/ 5A: Class 0.5 measurement range 100A to 2,400A
Accurate measuring range is 1%-120% of Rated Primary Current, for rated primary currents from 2,000A-5,000A;
CTSB0816-2000A/ 5A: Class 0.5 measurement range would be 20A to 2,400A.
CTSB0816-5000A/ 5A: Class 0.5 measurement range 50A to 6,000A
These examples demonstrate that to achieve the best accuracy over the anticipated primary current operating range, the Rated Primary Current of the current transformer must be carefully considered. So if the application typically measures less than 500A, the CTSB0816-500A/ 5A would be the appropriate selection where 500A is the Rated Primary Current for the current transformer.
By Timothy Chen | Published: April 16, 2019 – 5:02 pm
The non-intrusive measurement of a DC current is accomplished through the use of electronic sensors that use the Hall Effect to monitor and measure electrical currents. Hall Effect sensors used for DC current measurement are configured with an opening for the primary conductor. Matching the opening size to the outside diameter of the primary conductor assures optimal sensor accuracy. Two enclosure options are standard, either a solid body where the primary conductor must be taken offline for installation or split-core where the sensor may be installed without interfering with the primary conductor.
What is the Hall Effect?
The Hall Effect is the principle that a magnetic field applied perpendicular to a current will create a proportional Hall voltage perpendicular to the two fields. In a typical application, the DC current in the primary conductor creates the magnetic field which is proportional to the amount of DC current flowing through the conductor. This magnetic field acts on a current flowing through the Hall Effect sensor resulting in a Hall voltage proportional to the primary conductor DC current. This technology allows non-intrusive DC current and DC pulse measurements.
Open Loop Sensor
The basic Hall Effect electronic sensor is configured as an “open-loop†sensor. It measures the Hall voltage to determine the primary conductor DC current. For example, see our open-loop Hall Effect sensor: HOS-Q11 Open-loop Hall Effect Sensor
Closed Loop Sensor
A “closed-loop†sensor configuration is a more accurate Hall Effect electronic sensor. The “closed-loop†design incorporates a second magnetic field, which is used to offset the primary conductor magnetic field. The amount of power necessary to zero out the primary conductor field is then the representation of the DC primary conductor current. The zeroing of the magnetic flux provides a highly accurate representation of the primary conductor current. For example, see our closed-loop Hall Effect sensor: HCS-C5 Closed-loop Hall Effect Sensor
By Timothy Chen | Published: February 7, 2019 – 12:24 pm
The accurate measurement of AC Voltage is complicated by the necessity to minimize the burden the measuring instrument places on the primary circuit. The incorporation of a 1:1 current style voltage transformer in the AC voltage measuring circuit offers several advantages. Features
A minimal burden on the primary voltage circuit, with essentially zero primary circuit load,
Isolation of the primary AC circuit and the secondary output signal, and
Exceptional accuracy with a minimal phase shift.
The AC current style voltage transformer is designed with either a 1mA to 1mA or 2mA to 2mA ratio. An example of the implementation using an operational amplifier I/V (current to voltage) circuit or a resistor sampling circuit; The input resistor R limits the current to the 1mA or 2mA input. An application note document provide additional information – Application Note 1:1 Voltage Transformer (pdf 510kb). The TV31 with UL Recognition Certification is an example of a current style AC Voltage Transformer.
By Timothy Chen | Published: January 14, 2019 – 8:15 pm
The Supervisory Control and Data Acquisition (SCADA) systems used by electric utilities to manage the distribution of electric power are highly dependent upon the intelligent, micro-processor based devices installed throughout the electric power distribution grid. These intelligent devices acquire in real time the critical performance measurements (e.g. current, voltage), transmitting that information back to the central SCADA control center. The SCADA control center can issue operate commands (CONTROL actions) to the intelligent devices. These CONTROL actions can operate a switch, operate equipment that adjusts voltage or current, operate equipment that adjusts phase shift or any number of actions necessary to manage the electric power distribution grid.
Intelligent Devices Measurements
The intelligent devices typically measure AC current based upon the secondary output of a primary current transformer, typically 0 to 5 ampere AC. Transforming the 0 to 5 ampere AC signal to level appropriate to a micro-processor based circuit is handled by solid-core, toroidal current transformers. The 0 to 5 ampere conductor is looped through the center opening of the current transformer. A solid core current transformer offers superior transformation accuracy at a very competitive component price.
Solid-core current transformer can be designed to perform beyond the rated primary before magnetic core saturation offering the ability to measure AC current surges. The advent of digital signal processors (DSP) offers high signal sampling rates, enabling the measurement of the AC base frequency and the harmonics of the base frequency.
Surface Mount Technology (SMT) components offers compact designs capable of operating in harsh operating environments.
3 Phase SCADA Remote Terminal Unit
A three(3) phase SCADA Remote Terminal Unit (RTU) incorporates analog input measurement of AC current and AC voltage, digital signal processing necessary for the calculation of power, power factor, harmonics amplitudes, etc. and data transmission to the SCADA control center.